skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Conrad, Roth_E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Surveys of microbial communities (metagenomics) or isolate genomes have revealed sequence-discrete species. That is, members of the same species show >95% average nucleotide identity (ANI) of shared genes among themselves vs. <83% ANI to members of other species while genome pairs showing between 83% and 95% ANI are comparatively rare. In these surveys, aquatic bacteria of the ubiquitous SAR11 clade (Class Alphaproteobacteria) are an outlier and often do not exhibit discrete species boundaries, suggesting the potential for alternate modes of genetic differentiation. To explore evolution in SAR11, we analyzed high-quality, single-cell amplified genomes, and companion metagenomes from an oxygen minimum zone in the Eastern Tropical Pacific Ocean, where the SAR11 make up ~20% of the total microbial community. Our results show that SAR11 do form several sequence-discrete species, but their ANI range of discreteness is shifted to lower identities between 86% and 91%, with intra-species ANI ranging between 91% and 100%. Measuring recent gene exchange among these genomes based on a recently developed methodology revealed higher frequency of homologous recombination within compared to between species that affects sequence evolution at least twice as much as diversifying point mutation across the genome. Recombination in SAR11 appears to be more promiscuous compared to other prokaryotic species, likely due to the deletion of universal genes involved in the mismatch repair, and has facilitated the spread of adaptive mutations within the species (gene sweeps), further promoting the high intraspecies diversity observed. Collectively, these results implicate rampant, genome-wide homologous recombination as the mechanism of cohesion for distinct SAR11 species. 
    more » « less
  2. Abstract Metagenomic surveys have revealed that natural microbial communities are predominantly composed of sequence-discrete, species-like populations but the genetic and/or ecological processes that maintain such populations remain speculative, limiting our understanding of population speciation and adaptation to perturbations. To address this knowledge gap, we sequenced 112 Salinibacter ruber isolates and 12 companion metagenomes from four adjacent saltern ponds in Mallorca, Spain that were experimentally manipulated to dramatically alter salinity and light intensity, the two major drivers of this ecosystem. Our analyses showed that the pangenome of the local Sal. ruber population is open and similar in size (~15,000 genes) to that of randomly sampled Escherichia coli genomes. While most of the accessory (noncore) genes were isolate-specific and showed low in situ abundances based on the metagenomes compared to the core genes, indicating that they were functionally unimportant and/or transient, 3.5% of them became abundant when salinity (but not light) conditions changed and encoded for functions related to osmoregulation. Nonetheless, the ecological advantage of these genes, while significant, was apparently not strong enough to purge diversity within the population. Collectively, our results provide an explanation for how this immense intrapopulation gene diversity is maintained, which has implications for the prokaryotic species concept. 
    more » « less